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Tepoeof. INTRODUCTION

S~The problem of analysis of data coming from "sensitivity experiments" ••
in the context of Ballistics Research is classically old. Equally

classical is the problem of analysis of data originating from the statis-
tically analogous and the conceptually parallel experiments conducted in
biological and pharmnaceutical research in dosage mortality estimations.
Such estimation procedure has even a wider horizon, as the same methodology
is applied also to some reliability studies insofar as such studies
are characterized by the "stress-strength" phenomenon. In all these

-* areas, there has indeed been a considerable accumulation of data which
have been analyzed from time to time by various methods depending upon
the types and designs of the experiments suited to different models
characterizing the distribution of the response function. However, one
of the methods, which is frequently resorted to, is the use of the
maximum likelihood estimation procedure in the set-up of the cumulative '1
normal distribution as the model for describing the probability of
"success" (or "failure") varying with the intensity of the stimulus
applied. It is generally believed that this procedure of estimation in J
the framework of normal response is still one of the best available so
far. Hence, in response to frequent requests for analysis of such data,
the BRL oflAberdeen Proving Ground has coded the solutions (see Golub
and Grubbs ) providing the estimates of p and G along with the estimates
of their asymptotic variances.

II. THE AIM OF THE PRESENT PAPER

The estimates of the asymptotic variances referred to above would 4

no doubt provide, in themselves, some measure of efficiency of the
estimates of p and a; but, it appears that no measure has been made
available yet that would show how efficient these estimates are, and
to what extent the efficiency could be further improved. There is also
a need for a basis to measure the relative efficiency of the experiment
as a whole, the calculation of which would be based upon the maximum
possible precision attainable under such an estimation procedure. Such
a measure, if it could be provided, would furnish an idea of the relative
efficiencies of similar experiments conducted at different times, pointing
possibly to the necessity for re-assessment in some cases. The aim of
this paper is to provide such a measure of efficiency. The calculation
of efficiency as presented here is based on the exposition of some
simple statistics. Such an exposition is found to be helpful in under-
standing more visibly some of the well known implications and limi-
tations of the maximum likelihood estimation procedure in the given context.

G;olub, A., and Grubbs, F.E., "Analysis of sensitivity experiments
when the levels of stimulus cannot be controlled," Ann. Math. Stat.
S7 (1956), 257-265.
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In indicating how the maximum possible precision can be attained,
we also aim at suggesting a good design for such an experiment in the
situation where the levels of the stimulus could be reasonably controlled.

It is not known to the present authors if anybody else has, in the
past, attempted such an analysis based upon the exposition of the simple
statistics as presented in this paper.

IIJ. MAXIMUM LIKELIHOOD ESTIMATION PROCEDURE

A. Estimating Equations

IA* It is a,.sumed that the probability pi of success with the stimulus
x. is of the form,

t. 2 x.-1
pi 1 et /2  t (1)

"where P and a are the unknown parameters which require to be estimated.

We then let Y. to be a random variable taking the value 1 or 0,
1

depending upon whether the outcome of the trial is a success or a failure
at the level x. with the probability of success as pi = Prob (Y, = 1),

and the probability of failure as qi = 1 - pi z Prob (Y. 0).

It may be noted here that success and failure are relative terms and
that we can interchange the definitions. In this case and for the purpose
of discussion in this paper, we assume that the probability of success
becomes larger with the increased level of the stimulus.

The likelihood equation is given by

L PiYi (l-Pi)l' (2)
[,i=l1 1

where pi, as noted in (1), is a function of w and a, and the estimating

equations are obtained as;

6
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1n z (pi-yi)
a log L 0 (i[p. = 0 (3.1)

1" - (lP. )
i 1 1 1

D log L 1 n z1t(pi-yi)
-- 1 1 =0, (3.2)

a a 2p(l-p)

1 I t 2 .

where z. 1- e i-
1 f-1

For a given set of data, we may actually substitute the values of
Sas 1 or 0, depending upon whether the given stimulus has brought a

success or a failure, and obtain the equations in the following forms,

Z. Z1[ Z-- s- =0 (4.1)
f qf sPs

tfzf t z

1 f qf s 's 0 (4.2)Sf qf s Ps

where the subscripts s and f refer respectively to success and failure.

It may be pointed out here that zi, pi, qi are all functions of t.

The argument t. is omitted here for the sake of notational simplicity.1

It will be introduced whenever necessary to show the argument.

- Since the equations are not directly soluble, an iteration scheme

as embodied in the Newton-Raphson procedure is used to provide the estimates
of W and a. For the details of calculation, one may refer, among others,
to Golub and Grubbs.

B. Variances of the Estimates

The asymptotic variance-covariance matrix (see Golub and Grubbs1)
is given by

A- (5)
[A A A A[1

7

iL



I

where

r 1 L a logL 1
A= -E (6)

22
Sa-logL a logLj

L aa CFL

In the above, 'E' stands for expectation with reference to Yi. and A

A", A Pa and A in equation (5) denote, respectively, the variance of v,

the covariance between u and a, and the variance of a.

It is easy to show (see, for example, Golub and GrubbsI) that;
2

Z.
A (7.1)

22 .

A ] I (7.2)
i 2 piqi

2112
z. t.

A - i. (7.3)io z" Piqi

IV. LIMITATIONS AND RESTRICTIONS OWING TO SMALL SAMPLE SIZE

The efficiency of the maximum likelihood estimation procedure would
depend upon how large is the sample size. A large sample would provide
unbiased and minimum variance estimates of P and a. Such a claim cannot
be made in general when the number of trials is small. Results based on

simulation studies from small samples indicate 2 that the estimates of v
are unbiased for all practical purposes, but the estimates of a are biased,

being too small on the average. Variances of a have also been found to be
rather large. Such an instability of the estimate of a has also an adverse
effect on the efficiency of estimates of W and a, as such estimates are

proportional to a2 (see equations (7.1) - (7.3)).

More importantly, a small sample may not even be amenable to this
kind of analysis in some situations. Before the data are subjected to
such an analysis, the success-failure sequence has to be examired. In

2Visnaw, V. V., and Hagan, J. S., "Analysis of sensitivity data
following a normal distribution," Report No. 70-AS-113, Material
Testing Directorate, APG, Maryland, 1970.
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order that it be possible to estimate both p and a with cc(O,-),
there should be a zone of "mixed results." If no zone of "mixed results"
occurs, no estimate of a other than 0 can be obtained. (See, for example, -

3
Langlie ). (No zone of "mixed results" means that the highest stimulus
level at which a nonresponse (in this case, a failure) occurred is
less than the lowest stimulus level at which a response (in this case, a

: •success) occurred.)

I' V. ON THE CONSISTENCY OF THE EQUATIONS PROVIDING THE ESTIMATES

* A. Introductory Remarks Paving the Background

In consequence of having to deal with a small sample, we may face a
situation, as referred to above, where it may not be possible to furnish i
any maximum likelihood estimate of p and a at all, under the assumption
that a is non-zero and finite. In particular, we need a zone of "mixed

rcsults," and that we need such a zone is demonstrated in Langlie. 3

As the demonstration in Langlie is based on contrapositive reasoning
which is rather involved, one may be interested in seeing more visibly
how a zone of "no mixed results" really affects the consistency of the
estimating equations.

It has been observed in section III that the equations providing the
estimates of p and a and the variance-covariance matrix for these estimates
depend only upon z/q, z/p and t. Thus, a portrayal of z/q, z/p and the

t difference, (z/q-z/p), should provide the necessary information required
in checking the consistency of the estimating equations.

Diagram I shows the graphs of z/q, z/p and (z/q - z/p) as functions
of t. Of these three graphs, we need the first two for the purpose of our
immediate discussion. The third graph, that is, the graph of (z/q - z/p)
will be referred to in a later section (section VII).

Note that z(-t) = z(t), p(-t) = q(t), and q(-t) = p(t) with

t c ( Also, in the positive domain of t with t c [0,-), z/q > z/p, 7

1/2
q - p; z(O)/p(O) = z(O)/q(O) = (2/7r . In the negative domain of t,

z/p • z/q, as p takes the place of q.

Langlie, H. J., "A reliability test method for "one-shot" items,"
Publication No. U-1792, Reliability Branch, work performed under 4
US Army contract DA-04-495-ORD-1835, 1962.

9
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B. Inevitable Inconsistency with Two Observations

Given that a is nonzero and finite, two distinct observations would
always lead to inconsistency in the estimating equations. Let us suppose
that both the observations, given by t = t and t = t 2 , t < t 2 , are in

the positive domain of t, and that one gives a failure and the other, a
success. Then, equation (4.1) would reduce to z(t 1)/q(t]) = z(t)/P(t2 ).SThis can never happen when t2 and t 2 are distinct. If both 2 and

: give successes, then equation (4.1) would reduce to z1 (t])/p(tI) +

z(t2)/P(t 2 ) = 0. Since each of these two terms is positive, and only

one can go to 0 as t - -, this can never happen. Again, if the success
occurs in the positive domain and the failure in the negative domain,
then equation (4.1) would reduce to z(-t 1 )/q(-t 1 ) = z(t2)/p(t 2 ) which

would imply that z(t 1 )/P(tI) = z(t 2 )/P(t 2 ), and this is impossible, when

tI and t 2 are distinct. However, if success occurs in the negative do-

main, and failure in the positive domain with t1 = -t 2, then equation

(4.1) would be consistent being given by z(-t2)/q(-t 2 ) = z(t)/q(t2 )

z(t2)/q(t 2) = z(t2)/q(t2). But, equation (4.2) will be inconsistent.

Similar inconsistency can be demonstrated in other cases also.

C. Other Types of Inconsistencies

If there are s trials in the positive domain, all of which give
successes, equation (4.1) will indicate inconsistency. Alternatively, if
there are f trials in the negative domain all of which give failures,
equation (4.1) would lead to inconsistency. In each of such cases, there
will be no "zone of mixed results."

D. On the Need for a Zone of Mixed Results

Suppose there are three observatioits in the positive domain given by
t1 < t 2 < t 3 , and that failure occurs at t 1 and successes at t 2 and t 3 .

This provides an illustration of a zone of "no mixed results." In this

situation, equation (4.1) would reduce to z(t 1 )/q(t 1) = z(t2)/P(t 2 ) +

z(t 3)/p(t 3 ). It will be evident from an examination of the relative

magnitudes of z/q and z/p and their graphs (Diagram I) that such an

equation can be consistent, although t 1 , t 2 and t 3 cannot take values

far to the right. But, equation (4.2) would reduce to t 1 Z(t 1 )/q(t 1 ) =

t2z(t 2)/P(t2 + t 3Z(ts)/P(t 3). Such an equation is inconsistent with

10



Sequation (4.1) since tZ(t t t + t teqato 1.) 1\Jq~t1, t1 Z~t 2j/pt 2j t 1 Z~t 3 jPt 3j
tz(t 2 )/P(t 2 ) + t 3 z(t 3 )/P(t3.

2 3

If, on the other hand, we had successes at t 1 and t 3 , and failure at

t2, then equation (4.1) would reduce to z(t 2 )/q(t 2 ) = Z(tl)/p(tl) +

z(t 3 )/P(t 3 ). It will be evident from Diagram 1 that such a possibility

exists, although not in a zone very far away from 0. Since t 2 lies

between tI and t 3 , equation (4.2) will also be consistent. This illustrates

a zone of mixed results.

If t 1 giving a failure lies in the negative domain of t, that is,

if t is negative, while t and t are in the positive domain giving

success, then equation (4.1) would reduce to zl(tl)/P(tI) = z(t2)/P(t)

+ z(t 3 )/P(t 3 ), which may not be inconsistent. Equation (4.2) would

reduce tu - tlZ(tl)/p(t) = t 2 z(t2)/P(t 2 ) + t 3 z(t 3 )/p(t 3 ). This is
inpossible, since a positive quantity cannot be equal to a negative
quantity. This is an illustration of a zone without "mixed results,"

leading to inconsistency.

We can extend the above reasoning with reference to observations in
the negative domain to conclude in general that there will be inconsistency
in the equations arising from a zone of "no mixed results."

A scrutiny of the relative magnitudes of z/q and z/p as reflected
in the graphical portrayal in Diagram I would reveal another important
limitation of this estimation procedure. Observations few in number,
but too far away from t = 0, that is, too far away from p solely in the
positive domain of t, or solely in the negative domain of t, in spite of
giving a mixture, may tend to make equation (4.1) inconsistent. Such a
contingency will, of course, be very unlikely from the practical point
of view.

VI. CONSISTENCY OF THE EQUATIONS RELATIVE TO THE ESTIMATION OF a

The following observations on the relative magnitudes of the com-
ponents of equation (4.2) which is relevant to the estimation of a will
indicate how the consistency of the equation may be affected by a small
sample. Diagram II shows the graphs of tz/q and tz/p. It is easy to see
that

* 11
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li ra li
t-). q VOW q

z t
limrn - O, lim tz 0.

t P

The derivative of tz/p is given by

-z (t 2 ÷ tz 1) (8)
p p

At t 0, the derivative (8) is positive being given by (2/1)0. The
function tz/p is increasing to the right of 0, and has a maximum at a

point t satisfying (t 2 + tz/p - 1) = 0. The solution of the equation is
obtained empirically at t = 0.84 where the value of the function tz/p is
0.29.

Similarly, the derivative of tz/q is also positive at t = 0 being

given by (2/T)1 . This function goes to - with t, and does not appear to
have a maximum.

The value of tz/q at t = 0.84 is 1.18, while at this point,
tz/p = 0.29, being the maximum in this neighborhocd. On the right-hand
side of t = 0.84, the value of tz/p goes on decreasing while that of
tz/q goes on increasing. It will thus be evident from an inspection of
the graphs in Diagram II that if observations are taken solely in the
positive domain, such observations cannot be taken very far away from
t = 0.84 to the right to ensure that equation (4.2) be consistent. Also,
a failure has to be compensated by more than one success. With an inter-
change of p and q, a similar situation will emerge if observations are
taken solely in the negative domain of t.

Thus, Diagrams I and II jointly reveal that, whether in the positive
or in the negative domain, observations cannot be taken too far away
from zero.

VII. ON THE DIVERGENCE (z/q - z/p)

Along with the graphs of z/q and z/p, the graph of (z/q - z/p), as
mentioned in section V, is also shown in Diagram I, as this difference
was vital in checking the consistency of equation (4.1) in a small sample.
This divergence serves yet one more useful purpose 'or which the following
algebraic development is necessar).

It will be noticed that (z/q - z/p) -' , meeting z/q asymptotically
as t -T h. Te graph of (z/q - z/p) might give the impression as if it is
a straight line. It is not so. The slope of the curve changes very
slowly.

14



Let C(t) - (z/q - z/p). Its first derivative is given by

C'(t) z2 z2 zt zt
p q p

It is shown in Appendix (A) that C'(t) > O, indicating that C(t) is
increasing to the right of the origin. The value of (9) at t = 0 is
positive being given by 4/iT.

* •It can also be easily shown that

1 irn C(t) 4 1.2733 (10)

t--O t

The equation of the tangent to C(t) at t = 0 can therefore be written as

C(t) = tan 0 t , (iI

where tan 0 = 1.2733, with 6 = 51.850.

We show in Appendix (B) (writing B(t) for C(t)/t) that I
lir c(t- = 1 (12)

t

Again, we show in Appendix (C) (writing tB(t) for C(t)) that

Slira C'(t) -- 1.
t I

Hence, we may say that the tangent at t - makes an angle of 450 with I
the t-axis and that equation (12) represents the limiting form of the
tangent at infinity.

It is thus observed that the slope starts with an angle of 51.850

Sat 0, and attains an angle of 45' at infinity. What happens in between I•=Ir ~is indicated below. • -

'Vi
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The second derivative of C(t) is given by

3 3
C"(t) zz z"C11t) 2(- 3 -z

q p

3t( 2 2 2 z -z (3+ t2, (13)
q p

C"(t) is 0 at t 0, and then becomes negative until it goes to
zero again at t = 3.0731, indicating that it is a point of inflexioti of
C(t). The values of C(t) and C'(t) at t = 3.0731 are obtained respectively
as 3.3476 and 0.9426. Thus, the equation of the tangent to C(t) at
(3.0731, 3.3476) may be obtained as

- z = 0.9426t + 0.4509. (14)
q p

We can find the equations of the tangents also at other points. Such
equations will be helpful in checking the solutions of some equations
for which closed form solutions are not available (see section VIII).

The graph of C"(t) has some interesting features. It is zero at
t = 0, and ther. it becomes negative and remains so until it becomes zero
again at t = 3.0731. From this point on, it remains positive, going to
zero again in the neighborhood of t = 6.287. Although we do not need to
know about its behavior beyond t = 3.0731 for the present purpose, the
nature of the graph beyond this point may be interesting from the mathematical
point of view.

VIII. ON THE EFFICIENCY OF ESTIMATION WHEN THE EQUATIONS ARE CONSISTENT

A. The Basis for the Estimation of Efficiency

The elements of the information matrix A, given in (7.1) - (7.3),
are rewritten below as;

2.
A~!. = 1 A(t1)2

Z .

Au

At 17 2 i -= 2 A(t.)t., (15.2)

16
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2 2

p77i(t 1 ~ 2t (1S.3)
4i 0 3.

where 2, Atit2,Cl.3
where A(t.) is defined to be zi /piqi.

In a large sample, we would expect A to be 0. Since A(t.) is

positive, and that A(ti) A(-ti) A would tend to 0 with a large set
~Ia

of ± t. A small sample also could be taken, if observations could be
controlled, in such a manner as to make A zero, or nearly zero. In

fact, 4e would take the observations, if we could, at such values of t

as would make A zero, and, at the same time, make det. (A) maximum, or

det. (A-) minimum, in order that the efficiency of estimation be maxi-
mized. This desideratum of D-optimality is in keeping with the criterion
as is sometimes adopted in Design of Experiments to define the overall
efficiency of an experiment. Such maximization of det (A) or minimization

of dut. (A-) would bring about an overall reduction of variances of the
estimates, although we would have liked that the variance of each of the
estimates be minimized individually, if possible.

Det. (A) is given by

Det. (A) = (A A - (A ) 2 (16)

Expression (16) will be maximized if (A Ao) is maximized, andS2 2 11c
(A ) is minimized. Since (A ) is non-negative, the minimum possible

value would be given by 0, and this would be consistent with the require-

ment that the estimates of p and a2 be uncorrelated. Before the problem

of maximizing (A A ) is taken up, it may be appropriate to examine
a d saaa

the problem of maximizing each of A and A separately.

If it was desired to estimate only v, we would have utilized only
one equation, equation (4.1), for this purpose, and, in that case, the

variance of • would have been given by (A ) Similarly, if it was
U1

required to estimate only o, we would have made use of equation (4.2),-l
and the variance of a would have been given by (A ) Therefore, in

ca
Sthese two separate problems, we would have maximized either A or A

17
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B. Maximum of A ]
Since A = )A(ti)/a 2, and each A(t.) is positive, the maximum

of A will be attained if each A(ti) is maximized. This condition ]
will be consistent with the admissibility of replications at a t. .

A(t) is given by

A(t) 2 (17)

pq

The graph of (17) as a function of t in the positive domain of t is
given in Diagram III. The graph shows that (17) has a maximum at t = 0.
Differentiating (17) with respect to t, we obtain ]

2
A'(t) ( 2t ÷ - - .(18)

pq p q

An obvious solution of the equation 2t + z/p- z/q = 0 is given by t 0,
and, at this point, the value of A(t) is 2/r. In view of what has been
noted in section VII, the equation (18) cannot have any other solution i
since (z/q - z/p) can hardly be as large as 2t. The maximum possible
value of A, admitting repetitions at the same value of t, will be
given by A

2n (19)

1Tr

where n is the size of the sample. Hence, the minimum possible variance

for u will be given by

2 IT CT
2- (20)

It may be difficult to attain this ideal minimum limit in actual practice.
But, observations close to t = 0, that is, close to the mean, and approach-
ing the mean from both sides, would bring down the variance close to it.
We may approach the mean from both sides because the value of (17)
remains the same for ± t.

I
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C. Maximum of A

2 2
Since A = 'A(t.)ti /a2, and each of the constituent terms is

positive, A will be maximized, if each (Aiti ) is maximized. We have

A(t)t2 = z t (21)
pqI The graph of (21) as a function of t in the positive domain of t is indi-

cated in Diagram (III). It would show that (21) has a maximum. The

derivative of (A(t)t 2 ) is given by

z2tII2) 2zt 2 z z(A(t)t )[ = t-[2t2 --- ) -2] (22)
pq -q p

The maximum of (21) will be obtained at a point t given by the
solution of the equation,

2t 2 - t q-L- 2 2 0 (23)
q p

The solution t = 0 coming from (22) is ruled out. The zero of the function
in the positive domain, found empirically, is given by t = 1.5750, and

the value of (A(t)t 2) at this point is given by 1.9114/w. Hence, the
maximum possible value of A c will be given by

n(l.9114)
2 '(24)

where n is the size of the sample. Thus, the minimum possible variance

of ; may be obtained as

2
n(l.9114) 

(25)

Here also, observations close to t = ± 1.5750, that is, close to
+ 1.5750o and - 1.5750o from the mean, would bring down the variance
close to what is shown in (25). The minus sign of t is admitted because
the value of (21) remains the same for ± t.

20

- -=.-



empirically. However, the solution may be checked with the help of the

results indicated in section VII. The equation of the tangent to C(t)
at a point (to, C(t 0 )) may be obtained as C(t) = C'(to)t + C(tO) - C'(t 0 )t 0 .

r In this particular instance, to 1.5750, C(t 0 ) = 1.8802, and C'(t 0 )

S1.0644. Hence, for (z/q - z/p) in equation (23), we may substitute
(1.0644t + .2037). With this substitution, the equation (23) will
reduce to

2t - .2177t - 2.1377 = 0 . (26)

The positive root of equation (26) is obtained as 1.5750. This root
checks the solution obtained empirically.

D. Maximum of (A A )
till 00

In the joint estimation of . and a, we would be interested in
maximizing the product,

(A A 1(At)(At) (27) 1

So 1 1

2as (A would be expected to go to zero. One way would be to take

the product of the maxima of A and A as the required maximum of

(A A ), being given by

2n2 (1.9114)
S24 28)S1T 4

where n is the sample size. It will hardly be possible to reach this
Supper limit in a problem of jointly estimating both V and a. Alternatively,

a less ambitious maximum may be provided by n2 times the maximum of the
product,

[A(t) x A(t)t2] - [A(t)t]2. (29)

* •The graph of (29) as a function of t in the positive domain is indicated
in Diagram (III). The function appears to have a maximum. The derivative1 2 .
of (A(t)t) is given by

2 4I
2' -2z t 2 z zS[(A(t)t)2] T-72z [2t2 t q p (30

(pq) q
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In the context of finding the maximum, the root t = 0 is ruled
out. The maximum will be given by the positive root of the equation

2t 2 - t( - 0. (31)
qp

The positive root is empirically obtainel at t = 1.1381. Hence, the
observations have to be taken close to ±t1l.1381c) from the mean. As in
the two other cases, the minus sign is taken as admissible, because (29)
remains the same for ± t.

Here also, the solution may be checked by the same device as referred
to earlier.

The value of A(t) at t = 1.1381 is given by

1 24
1.2304 = 0.3916 , (32)

T2

and the value of (A(t)t 2) at t = 1.1381 is given by

1.5937 . 0.5073 . (33)
1T

Hence, the maximum of (A PA) by the maximum of the product in (29)
is given by

n(l.2304) x[n( .937)
2 2

2n

-T (1.9609)
IT a

2
n-4 (.1987) (34)

In this set-up, when A = 0, the minimum possible variances of
iu and a would be given respectively by

2 2
n(1.2304) and 1.937) ' (35)
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that is, by

[_2 2"(2'5530) and 2--(1.9712) (36)

E. Recommendation

Hence, in the problem of joint estimation of V and a with maximized
£ efficiency for both, the recommended procedure would be to aim at taking

the observations in the neighborhood of t = _ 1.1381, that is, at a dis-
t tance of (± 1.1381)a from the mean. If we take the same number of obser-

vations on either side of the mean at the same distance, A will be zero.

In this context, it may be pertinent to observe that the point t = 0
2makes A(t) the maximum, but contributes nothing to A(t)t . On the other

2
hand, the points at t = ± 1.5750 make A(t)t the maximum, while adding

something positive, although not very large, to A(t).

In spite of the fact that observations in the neighborhood of t = 0
would result in increased efficiency in the estimation of v, while not
being contributory at all to the estimation of a, aiming at t = 0 might
help in getting a zone of mixed results.

IX. ASSESSMENT OF EFFICIENCY OF A RECORDED EXPERIMENT

I
Golub and Grubbs used this methodology to provide the estimates of

Sand a, as well as the estimates of a2 and a0 for the following experiment.

In firing five rounds of a given projectile of a given armor plate,
the following observations were recorded:

Velocity (f/s) Condition of Impact

2433 Non-penetration

2415 Non-penetration

2415 Non-penetration

2453 Penetration

2423 Penetration
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In the above example, the sample size n = 5. The estimates of
1

P and a were obtained respectively as 2431.6 f/s and 15.0 f/s, and of
2 2
ou and ^' as 115.5 and 155.5, respectively. The variance-covariance matrix

V4 a
was obtained as

[11S.1
-1 [ 01011 - .00330' 1 SO[155 5.8

.00330 .00751 L5.8 15.5

The value of det (A) = .000065036, while the value of (34), substituting
S^2 2
a for a , is .00009812. Hence, the ratio of the two is .6635 which means
that the efficiency of estimation in this particular experiment has been
obtained as 66.35%. (It may be mentioned ýere that the efficiency could
also have been calculated by dividing a /n (.1987) by det (A- ) to get
whole numbers, rather than fractions, in the division.)

The ideal variance of p, by (36), would have been 114.89, while, in

the experiment, a3 has been obtained as 115.5. 1Tus, the efficiency in

the estimation of p is obtained as 114.89/115.50 = 99.47% which is very
high.

The ideal variance of a, by (36), would have been obtained as 88.70,
2while, in this particular experiment, ac has been obtained as 155.5. Thus,
a

the efficiency in estimating a may be calculated as 88.70/155.5 = 57.04%.

Now, let us examine the values of t of this particular experiment
which are given below:

R t

2415 -1.11
2415 -1.11
2423 -0.57

2433 0.09

2453 1.43

One may find slight arithmetical discrepancies in these estimates, but

such small discrepancies will not be of any material consequence.
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The values of t in the neighborhood of t 0 have been responsible
to render the variance of 0 almost ideally small. If there were a few
more observations in the neighborhood of t = ± 1.57, the variances of

a would have been almost ideally smaller.
2

An observation at t = 1.43 has helped in the reduction of oa to
some extent.

If the estimated variances of p and o as obtained in this experiment
would have compared with the more ambitious limits of variances as given
in (20) and (25), the calculated efficiency of this experiment would

* be less.

X. REMARK

It appears that many experiments have, in the past, been analyzed

by this procedure and we have, with us, the estimates of p, a, and
2 2
0 Ga a. It may be worthwhile to calculate the efficiencies of those
experiments in the light of this discussion to let the experimenters
know where they stand in retrospect with regard to the estimates of
. and a in each case. This search may be of help in the matter of per-
spective planning.
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APPENDIX A*

We wish to show that the first derivative of

SC(t) = I1- 1 )
is positive. q "

We have 1 1 2 1 11i 1 ) z ( 1 + ISc '(t ) o t Z ( p - -+
q p-q p

2Sz [ -qt_ +•_zq q 2 .

The function z - qt is positive at t = 0, has a negative derivative, and
tends to zero as t -• •. Therefore, z - qt • 0 for t > 0.

Hence, (tB(t)) > 0.

IEI

[I

.Appendices A, B and C are due to Mr. W. Egerland.
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r APPENDIX B

Consider the function,

t =z(t) z(t)

We wish to show that lim
unB(t) = r.

We note first, since lim p(t) - 1, that

z(t)lim B(t) I lM -t I- C
St-P- t-"M

Since the limits of both z(t) and tq(t) are zero as t -• •, we may apply
l'Hospital's rule for the evaluation of (*) to obtain

lim B(t) Jlim z(t) tz*t)
tO t•t tz•

The right hand side of (*) is again of the form [0/0), so we may apply

the rule again. Using z'(t) = - tz(t), z"(t) = (t - l)z(t), we have

lim B(t) = Jim
| t to-2z(t) + t z(t)

S2 1

t 2

1=31,

r

t

I , mm mR•~
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APPENDIX C

We wish to show that lim (tB(t))' = 1.

S • Since (tB(t))' B(t) + tB' (t) a B(t) + tB(t) - log B(t), it
d

d
is sufficient to show that tB(t)3.t log B(t) -1- 0 as t - .Writing

B(t) in the form

Sz~(t) 2p~t)-l)
B t tp~t)q~t)

it follows after some manipulation that

tB(et) og B(t) t( LL + B-t)

$ tHenc)+ $(t)] B(t).

J[ We can omit B(t), since B(t) -1 , as t- .

•i (Remembering that and tz go to 0 as t ÷ ,we have, by 1'Hospital's

. i rule,

g ~~lira O(t) lira 2( 1 + t
Z

But, the limit on the right is zero, since from Appendix B,
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